""If you cry, you die. (a harry styles fanfic)""

harry cries to much and it annoys the crap out of Lindsay. What happens when Lindsay does something horrible to stop harry from every crying again? D:


6. dream

i had a dream last night that I was back at school with Harry.

In my dream, we were doing a project about genetics.


I went on Wikipedia and read all the information out loud to Harry.

"Genetics From Wikipedia, the free encyclopedia   This article is about the general scientific term. For the scientific journal, see Genetics (journal).

Genetics  (from Ancient Greek   γενετικός   genetikos , "genitive" and that from  γένεσις   genesis , "origin"),[1][2][3]  a discipline of biology , is the science  of genes , heredity , andvariation  in living organisms .[4][5]For a generally accessible and less technical introduction to the topic, see Introduction to genetics.

Genetics deals with the molecular structure and function of genes, gene behavior in context of a cell or organism (e.g. dominance and epigenetics), patterns of inheritance from parent to offspring, and gene distribution, variation and change in populations, such as through Genome-Wide Association Studies. Given that genes are universal to living organisms, genetics can be applied to the study of all living systems, from viruses and bacteria, through plants and domestic animals, to humans (as in medical genetics).

The fact that living things inherit traits from their parents has been used since prehistoric times to improve crop plants and animals through selective breeding. However, the modern science of genetics, which attempts to understand the process of inheritance, only began with the work of Gregor Mendel in the mid-19th century.[6] Although he did not know the physical basis for heredity, Mendel observed that organisms inherit traits by way of discrete units of inheritance, which are now called genes.

Genes correspond to regions within DNA, a molecule composed of a chain of four different types of nucleotides—the sequence of these nucleotides is the genetic information organisms inherit. DNA naturally occurs in a double stranded form, with nucleotides on each strand complementary to each other. Each strand can act as a template for creating a new partner strand. This is the physical method for making copies of genes that can be inherited.

The sequence of nucleotides in a gene is translated by cells to produce a chain of amino acids, creating proteins—the order of amino acids in a protein corresponds to the order of nucleotides in the gene. This relationship between nucleotide sequence and amino acid sequence is known as the genetic code. The amino acids in a protein determine how it folds into a three-dimensional shape; this structure is, in turn, responsible for the protein's function. Proteins carry out almost all the functions needed for cells to live. A change to the DNA in a gene can change a protein's amino acids, changing its shape and function: this can have a dramatic effect in the cell and on the organism as a whole.

Although genetics plays a large role in the appearance and behavior of organisms, it is the combination of genetics with what an organism experiences that determines the ultimate outcome. For example, while genes play a role in determining an organism's size, the nutrition and health it experiences after inception also have a large effect.


Although the science of genetics began with the applied and theoretical work of Gregor Mendel in the mid-19th century, other theories of inheritance preceded Mendel. A popular theory during Mendel's time was the concept of blending inheritance: the idea that individuals inherit a smooth blend of traits from their parents. Mendel's work provided examples where traits were definitely not blended after hybridization, showing that traits are produced by combinations of distinct genes rather than a continuous blend. Blending of traits in the progeny is now explained by the action of multiple genes with quantitative effects. Another theory that had some support at that time was the inheritance of acquired characteristics: the belief that individuals inherit traits strengthened by their parents. This theory (commonly associated withJean-Baptiste Lamarck) is now known to be wrong—the experiences of individuals do not affect the genes they pass to their children.[7] Other theories included thepangenesis of Charles Darwin (which had both acquired and inherited aspects) and Francis Galton's reformulation of pangenesis as both particulate and inherited.[8]

Modern genetics started with Gregor Johann Mendel, a German-Czech Augustinian monk and scientist who studied the nature of inheritance in plants. In his paper "Versuche über Pflanzenhybriden" ("Experiments on Plant Hybridization"), presented in 1865 to the Naturforschender Verein (Society for Research in Nature) inBrünn, Mendel traced the inheritance patterns of certain traits in pea plants and described them mathematically.[9] Although this pattern of inheritance could only be observed for a few traits, Mendel's work suggested that heredity was particulate, not acquired, and that the inheritance patterns of many traits could be explained through simple rules and ratios.

The importance of Mendel's work did not gain wide understanding until the 1890s, after his death, when other scientists working on similar problems re-discovered his research. William Bateson, a proponent of Mendel's work, coined the word genetics in 1905.[10][11] (The adjective genetic, derived from the Greek word genesis—γένεσις, "origin", predates the noun and was first used in a biological sense in 1860.)[12] Bateson popularized the usage of the word genetics to describe the study of inheritance in his inaugural address to the Third International Conference on Plant Hybridization in London, England, in 1906.[13]

After the rediscovery of Mendel's work, scientists tried to determine which molecules in the cell were responsible for inheritance. In 1911, Thomas Hunt Morganargued that genes are on chromosomes, based on observations of a sex-linked white eye mutation in fruit flies.[14] In 1913, his student Alfred Sturtevant used the phenomenon of genetic linkage to show that genes are arranged linearly on the chromosome.[15]


Although genes were known to exist on chromosomes, chromosomes are composed of both protein and DNA, and scientists did not know which of these is responsible for inheritance. In 1928, Frederick Griffith discovered the phenomenon of transformation (see Griffith's experiment): dead bacteria could transfer genetic material to "transform" other still-living bacteria. Sixteen years later, in 1944, Oswald Theodore Avery, Colin McLeod and Maclyn McCarty identified the molecule responsible for transformation as DNA.[16] The role of the nucleus as the respository of genetic information in eukaryotes had been established Hämmerling in 1943 in his work on the single celled alga Acetabularia.[17] The Hershey-Chase experiment in 1952 confirmed that DNA (rather than protein) is the genetic material of the viruses that infect bacteria, providing further evidence that DNA is the molecule responsible for inheritance.[18]Molecular genetics

James D. Watson and Francis Crick determined the structure of DNA in 1953, using the X-ray crystallography work of Rosalind Franklin and Maurice Wilkins that indicated DNA had a helical structure (i.e., shaped like a corkscrew).[19][20] Their double-helix model had two strands of DNA with the nucleotides pointing inward, each matching a complementary nucleotide on the other strand to form what looks like rungs on a twisted ladder.[21] This structure showed that genetic information exists in the sequence of nucleotides on each strand of DNA. The structure also suggested a simple method for duplication: if the strands are separated, new partner strands can be reconstructed for each based on the sequence of the old strand.

Although the structure of DNA showed how inheritance works, it was still not known how DNA influences the behavior of cells. In the following years, scientists tried to understand how DNA controls the process of protein production. It was discovered that the cell uses DNA as a template to create matching messenger RNA (a molecule with nucleotides, very similar to DNA). The nucleotide sequence of a messenger RNA is used to create an amino acid sequence in protein; this translation between nucleotide and amino acid sequences is known as the genetic code.

With this molecula mate with each other, the offspring are called the "F2" (second filial) generation. One of the common diagrams used to predict the result of cross-breeding is the Punnett square.

When studying human genetic diseases, geneticists often use pedigree charts to represent the inheritance of traits.[30] These charts map the inheritance of a trait in a family tree.

[edit] Interactions of multiple genes Human height is a trait with complex genetic causes. Francis Galton's data from 1889 shows the relationship between offspring height as a function of mean parent height. While correlated, remaining variation in offspring heights indicates environment is also an important factor in this trait.

Organisms have thousands of genes, and in sexually reproducing organisms these genes generally assort independently of each other. This means that the inheritance of an allele for yellow or green pea color is unrelated to the inheritance of alleles for white or purple flowers. This phenomenon, known as "Mendel's second law" or the "Law of independent assortment", means that the alleles of different genes get shuffled between parents to form offspring with many different combinations. (Some genes do not assort independently, demonstrating genetic linkage, a topic discussed later in this article.)

Often different genes can interact in a way that influences the same trait. In the Blue-eyed Mary (Omphalodes verna), for example, there exists a gene with alleles that determine the color of flowers: blue or magenta. Another gene, however, controls whether the flowers have color at all or are white. When a plant has two copies of this white allele, its flowers are white—regardless of whether the first gene has blue or magenta alleles. This interaction between genes is called epistasis, with the second gene epistatic to the first.[31]

Many traits are not discrete features (e.g. purple or white flowers) but are instead continuous features (e.g. human height and skin color). Thesecomplex traits are products of many genes.[32] The influence of these genes is mediated, to varying degrees, by the environment an organism has experienced. The degree to which an organism's genes contribute to a complex trait is called heritability.[33] Measurement of the heritability of a trait is relative—in a more variable environment, the environment has a bigger influence on the total variation of the trait. For example, human height is a trait with complex causes. It has a heritability of 89% in the United States. In Nigeria, however, where people experience a more variable access to good nutrition and health care, height has a heritability of only 62%.[34]

[edit] Molecular basis for inheritance [edit] DNA and chromosomes Main articles: DNA and Chromosome The molecular structure of DNA. Bases pair through the arrangement of hydrogen bonding between the strands.

The molecular basis for genes is deoxyribonucleic acid (DNA). DNA is composed of a chain of nucleotides, of which there are four types: adenine (A),cytosine (C), guanine (G), and thymine (T). Genetic information exists in the sequence of these nucleotides, and genes exist as stretches of sequence along the DNA chain.[35] Viruses are the only exception to this rule—sometimes viruses use the very similar molecule RNA instead of DNA as their genetic material.[36]

DNA normally exists as a double-stranded molecule, coiled into the shape of a double-helix. Each nucleotide in DNA preferentially pairs with its partner nucleotide on the opposite strand: A pairs with T, and C pairs with G. Thus, in its two-stranded form, each strand effectively contains all necessary information, redundant with its partner strand. This structure of DNA is the physical basis for inheritance: DNA replication duplicates the genetic information by splitting the strands and using each strand as a template for synthesis of a new partner strand.[37]

Genes are arranged linearly along long chains of DNA base-pair sequences. In bacteria, each cell usually contains a single circular genophore, whileeukaryotic organisms (including plants and animals) have their DNA arranged in multiple linear chromosomes. These DNA strands are often extremely long; the largest human chromosome, for example, is about 247 million base pairs in length.[38] The DNA of a chromosome is associated with structural proteins that organize, compact, and control access to the DNA, forming a material called chromatin; in eukaryotes, chromatin is usually composed ofnucleosomes, segments of DNA wound around cores of histone proteins.[39] The full set of hereditary material in an organism (usually the combined DNA sequences of all chromosomes) is called the genome.

While haploid organisms have only one copy of each chromosome, most animals and many plants are diploid, containing two of each chromosome and thus two copies of every gene.[27] The two alleles for a gene are located on identical loci of the two homologous chromosomes, each allele inherited from a different parent.

Walther Flemming's 1882 diagram of eukaryotic cell division. Chromosomes are copied, condensed, and organized. Then, as the cell divides, chromosome copies separate into the daughter cells.

Many species have so called sex chromosomes. They are special in that they determine the sex of the organism.[40] In humans and many other animals, the Y-chromosome contains the gene that triggers the development of the specifically male characteristics. In evolution, this chromosome has lost most of its content and also most of its genes, while the X chromosome is similar to the other chromosomes and contains many genes. The X and Y chromosomes form a very heterogeneous pair.

[edit] Reproduction Main articles: Asexual reproduction and Sexual reproduction

When cells divide, their full genome is copied and each daughter cell inherits one copy. This process, called mitosis, is the simplest form of reproduction and is the basis for asexual reproduction. Asexual reproduction can also occur in multicellular organisms, producing offspring that inherit their genome from a single parent. Offspring that are genetically identical to their parents are called clones.

Eukaryotic organisms often use sexual reproduction to generate offspring that contain a mixture of genetic material inherited from two different parents. The process of sexual reproduction alternates between forms that contain single copies of the genome (haploid) and double copies (diploid).[27] Haploid cells fuse and combine genetic material to create a diploid cell with paired chromosomes. Diploid organisms form haploids by dividing, without replicating their DNA, to create daughter cells that randomly inherit one of each pair of chromosomes. Most animals and many plants are diploid for most of their lifespan, with the haploid form reduced to single cell gametes such as sperm or eggs.

Although they do not use the haploid/diploid method of sexual reproduction, bacteria have many methods of acquiring new genetic information. Some bacteria can undergo conjugation, transferring a small circular piece of DNA to another bacterium.[41] Bacteria can also take up raw DNA fragments found in the environment and integrate them into their genomes, a phenomenon known as transformation.[42] These processes result in horizontal gene transfer, transmitting fragments of genetic information between organisms that would be otherwise unrelated.

[edit] Recombination and linkage Main articles: Chromosomal crossover and Genetic linkage
Thomas Hunt Morgan's 1916 illustration of a double crossover between chromosomes

The diploid nature of chromosomes allows for genes on different chromosomes to assort independently during sexual reproduction, recombining to form new combinations of genes. Genes on the same chromosome would theoretically never recombine, however, were it not for the process of chromosomal crossover. During crossover, chromosomes exchange stretches of DNA, effectively shuffling the gene alleles between the chromosomes.[43] This process of chromosomal crossover generally occurs during meiosis, a series of cell divisions that creates haploid cells.

The probability of chromosomal crossover occurring between two given points on the chromosome is related to the distance between the points. For an arbitrarily long distance, the probability of crossover is high enough that the inheritance of the genes is effectively uncorrelated. For genes that are closer together, however, the lower probability of crossover means that the genes demonstrate genetic linkage—alleles for the two genes tend to be inherited together. The amounts of linkage between a series of genes can be combined to form a linear linkage map that roughly describes the arrangement of the genes along the chromosome.[44]

[edit] Gene expression [edit] Genetic code Main article: Genetic code The genetic code: DNA, through amessenger RNA intermediate, codes for protein with a triplet code.

Genes generally express their functional effect through the production of proteins, which are complex molecules responsible for most functions in the cell. Proteins are made up of one or more polypeptide chains, each of which is composed of a sequence of amino acids, and the DNA sequence of a gene (through an RNA intermediate) is used to produce a specific amino acid sequence. This process begins with the production of an RNA molecule with a sequence matching the gene's DNA sequence, a process..." I said but I trailed off as Harry planted his lips against mine.

"this is the best project ever"


"Cos it means I get to spend time with you"

"harry we live together"

"i love you, lindsay."

i wake up in my cardboard box crying and sweATY because i was wrong.

that wasn't just a dream

That was a memory. 

Join MovellasFind out what all the buzz is about. Join now to start sharing your creativity and passion
Loading ...